4,163 research outputs found

    Challenges for ‘Green IT’ in the Scottish ADM industry

    Get PDF
    Our research reports specifically on the challenges and behaviours towards ‘Green IT’ experienced within one complex industry. We adopt a theoretical stance based upon Unified Theory of Acceptance and Use of Technology (UTAUT) to formulate an outline ‘Green IT’ agenda. We draw on historical thinking which underpins UTAUT, which can be traced back to the theory of reasoned action (TRA) and the frequently adopted technology acceptance model (TAM). Recent research on the business case for a green IT strategy identifies benefits to an enterprise’s revenue and/or cost rather than just its image making. In this respect, empirical evidence was collected and analysed from the Aerospace, Defence and Marine (ADM) industry in Scotland which includes over 800 companies employing nearly 40,000 staff which creates Gross Value Adding to the Scottish economy of around £2 billion. Data collection involved an on-line based semi structured questionnaire to all 180 Aerospace and Defence organisations using the Scottish Enterprise Database. Our findings suggest a need to develop unified measurements to evaluate green IT progress. Specifically, these should include a metric capable of measuring IT companies’ net environmental activism, assessing not only the impact of changes but also on the operations and products of their clients

    Characterisation of whisker control in the California sea lion (Zalophus californianus) during a complex, dynamic sensorimotor task

    Get PDF
    Studies in pinniped whisker use have shown that their whiskers are extremely sensitive to tactile and hydrodynamic signals. While pinnipeds position their whiskers on to objects and have some control over their whisker protractions, it has always been thought that head movements are more responsible for whisker positioning than the movement of the whiskers themselves. This study uses ball balancing, a dynamic sensorimotor skill that is often used in human and robotic coordination studies, to promote sea lion whisker movements during the task. For the first time, using tracked video footage, we show that sea lion whisker movements respond quickly (26.70 ms) and mirror the movement of the ball, much more so than the head. We show that whisker asymmetry and spread are both altered to help sense and control the ball during balancing. We believe that by designing more dynamic sensorimotor tasks we can start to characterise the active nature of this specialised sensory system in pinnipeds

    Genome sequences of 12 isolates of the EU1 lineage of Phytophthora ramorum, a fungus-like pathogen that causes extensive damage and mortality to a wide range of trees and other plants

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Here we present genome sequences for twelve isolates of the invasive pathogen Phytophthora ramorum EU1. The assembled genome sequences and raw sequence data are available via BioProject accession number PRJNA177509. These data will be useful in developing molecular tools for specific detection and identification of this pathogen.This work was supported in part by a grant funded jointly by the Biotechnology and Biological Sciences Research Council, the Department for Environment, Food and Rural Affairs, the Economic and Social Research Council, the Forestry Commission, the Natural Environment Research Council and the Scottish Government, under the Tree Health and Plant Biosecurity Initiative (BB/L012499/1). PAO was supported by a joint studentship from the Fera seedcorn programme and from the Defra Future-proofing Plant Health project (PH0441). We acknowledge funding for the joint studentship from the Fera seedcorn programme and from the Defra Future-proofing Plant Health project (PH0441)

    Ecomorphology reveals Euler spiral of mammalian whiskers

    Get PDF
    Whiskers are present in many species of mammals. They are specialised vibrotactile sensors that sit within strongly innervated follicles. Whisker size and shape will affect the mechanical signals that reach the follicle, and hence the information that reaches the brain. However, whisker size and shape have not been quantified across mammals before. Using a novel method for describing whisker curvature, this study quantifies whisker size and shape across 19 mammalian species. We find that gross two‐dimensional whisker shape is relatively conserved across mammals. Indeed, whiskers are all curved, tapered rods that can be summarised by Euler spiral models of curvature and linear models of taper, which has implications for whisker growth and function. We also observe that aquatic and semi‐aquatic mammals have relatively thicker, stiffer, and more highly tapered whiskers than arboreal and terrestrial species. In addition, smaller mammals tend to have relatively long, slender, flexible whiskers compared to larger species. Therefore, we propose that whisker morphology varies between larger aquatic species, and smaller scansorial species. These two whisker morphotypes are likely to induce quite different mechanical signals in the follicle, which has implications for follicle anatomy as well as whisker function

    Morphometrics for sports mechanics: Showcasing tennis racket shape diversity

    Get PDF
    Tennis racket design has changed from its conception in 1874. While we know that modern tennis rackets are lighter and have larger heads than their wooden predecessors, it is unknown how their gross shape has changed specifically. It is also unknown how racket shape is related to factors that influence performance, like the Transverse and Polar moments of inertia. The aim of this study was to quantify how tennis racket shape has changed over time, with a view to furthering our understanding of how such developments have influenced the game. Two-dimensional morphometric analysis was applied to silhouettes extracted from photographs of 514 rackets dating from 1874 to 2017. A principal component analysis was conducted on silhouette outlines, to allow racket shape to be summarised. The rackets were grouped by age and material for further analysis. Principal Component 1 accounted for 87% of the variation in racket shape. A pairwise Pearson’s correlation test indicated that head width and length were both strongly correlated to Principal Component 1 (r = 0.916 & r = 0.801, p-values<0.001). Principal Component 1 was also correlated to the Polar (r = 0.862, p<0.001) and Transverse (r = -0.506, p<0.001) moments of inertia. Racket age and material had a medium (p<0.001, η2p = 0.074) and small (p = 0.015, η2p = 0.017) effect on Principal Component 1, respectively. Mean racket shapes were also generated from the morphometric analyses for the material and age groupings, and we consider how these shape changes may have influenced performance and injury risk. These mean shape groupings could support the development of models, such as finite element analysis, for predicting how historical developments in tennis equipment have affected performance and injury risk

    Mystacial whisker layout and musculature in the guinea pig ( Cavia porcellus ): A social, diurnal mammal

    Get PDF
    All mammals (apart from apes and humans) have whiskers that make use of a similar muscle arrangement. Whisker specialists, such as rats and mice, tend to be nocturnal and arboreal, relying on their whisker sense of touch to guide exploration around tree canopies at night. As such, nocturnal arboreal rodents have many whiskers that are organised into a grid-like pattern, and moved using a complex array of muscles. Indeed, most arboreal, nocturnal mammals tend to have specialised whiskers that are longer and arranged in a dense, regular grid, compared to terrestrial, diurnal mammals. The guinea pig diverged early from murid rodents (around 75 million years ago), and are ground-dwelling, diurnal animals. It would be predicted that, as a terrestrial mammal, they may have less whiskers and a reduced muscle architecture compared to arboreal, nocturnal rodents. We examined the mystacial whisker layout, musculature and movement capacity of Guinea pig (Cavia porcellus) whiskers and found that they did indeed have a disorganized whisker layout, with a fortification around the eye area. In addition, there was a reduction in musculature, especially in the intrinsic muscles. Despite guinea pigs not cyclically moving their whiskers, the mystacial musculature was still very similar to that of murid rodents. We suggest that the conserved presence of whisker layout and musculature, even in visual mammals such as primates and guinea pigs, may indicate that whiskers still play an important role in these animals, including protecting the eyes and being involved in tactile social behaviors

    Manual Whisker Annotator (MWA): A Modular Open-Source Tool

    Get PDF
    Rodents are key to generating translational data for healthcare research. Behavioural analyses, in particular, are integral to the non-invasive monitoring of rodent health and welfare. Finding quantitative behavioural measures mitigates stress, allowing for the animal behave freely while also enabling the same animal to be studied over the time-course of its life. Locomotion and whisking are both such quantitative behavioural measures, and have been found to be significantly impacted in rodent models of neurodegenerative disease. While automatic trackers of whiskers and locomotion exist, a manual tracker is required to validate these approaches, and also to annotate complex videos where these automatic versions fail. Manually annotating whiskers for research purposes is a long and tedious task and current software does little to provide an intuitive and simple interface to carry out this task. This led to the creation of the Manual Whisker Annotator (MWA). MWA is an open source, portable whisker annotation tool developed for the Windows platform. Not only does MWA make the process much quicker, it also provides added statistical tools to analyse the data. MWA was developed in C# and WPF using the .NET framework, and could be used in any situation where annotating or tracking multiple targets is desired

    Wandering behaviour prevents inter and intra oceanic speciation in a coastal pelagic fish

    Get PDF
    Small pelagic fishes have the ability to disperse over long distances and may present complex evolutionary histories. Here, Old World Anchovies (OWA) were used as a model system to understand genetic patterns and connectivity of fish between the Atlantic and Pacific basins. We surveyed 16 locations worldwide using mtDNA and 8 microsatellite loci for genetic parameters, and mtDNA (cyt b; 16S) and nuclear (RAG1; RAG2) regions for dating major lineage-splitting events within Engraulidae family. The OWA genetic divergences (0-0.4%) are compatible with intra-specific divergence, showing evidence of both ancient and contemporary admixture between the Pacific and Atlantic populations, enhanced by high asymmetrical migration from the Pacific to the Atlantic. The estimated divergence between Atlantic and Pacific anchovies (0.67 [0.53-0.80] Ma) matches a severe drop of sea temperature during the Gunz glacial stage of the Pleistocene. Our results support an alternative evolutionary scenario for the OWA, suggesting a coastal migration along south Asia, Middle East and eastern Africa continental platforms, followed by the colonization of the Atlantic via the Cape of the Good Hope.Portuguese Foundation for Science & Technology (FCT) [SFRH/BD/36600/2007]; FCT [UID/MAR/04292/2013, SFRH/BPD/65830/2009]; FCT strategic plan [UID/Multi/04326/2013]info:eu-repo/semantics/publishedVersio

    Aspirin, clopidogrel and prasugrel monotherapy in patients with type 2 diabetes mellitus: a double-blind randomised controlled trial of the effects on thrombotic markers and microRNA levels

    Get PDF
    Background: Despite increased atherothrombotic risk in type 2 diabetes mellitus, (T2DM) the best preventative antithrombotic strategy remains undetermined. We defined the effects of three antiplatelet agents on functional readout and biomarker kinetics in platelet activation and coagulation in patients with T2DM. Materials and methods: 56 patients with T2DM were randomised to antiplatelet monotherapy with aspirin 75 mg once daily (OD), clopidogrel 75 mg OD or prasugrel 10 mg OD during three periods of a crossover study. Platelet aggregation (PA) was determined by light-transmittance aggregometry and P-selectin expression by flow cytometry. Markers of fibrin clot dynamics, inflammation and coagulation were measured. Plasma levels of 14 miRNA were assessed by quantitative polymerase chain reactions. Results: Of the 56 patients, 24 (43%) were receiving aspirin for primary prevention of ischaemic events and 32 (57%) for secondary prevention. Prasugrel was the strongest inhibitor of ADP-induced PA (mean ± SD maximum response to 20μmol/L ADP 77.6 ± 8.4% [aspirin] vs. 57.7 ± 17.6% [clopidogrel] vs. 34.1 ± 14.1% [prasugrel], p < 0.001), P-selectin expression (30 μmol/L ADP; 45.1 ± 21.4% vs. 27.1 ± 19.0% vs. 14.1 ± 14.9%, p < 0.001) and collagen-induced PA (2 μg/mL; 62.1 ± 19.4% vs. 72.3 ± 18.2% vs. 60.2 ± 18.5%, p < 0.001). Fibrin clot dynamics and levels of coagulation and inflammatory proteins were similar. Lower levels of miR-24 (p = 0.004), miR-191 (p = 0.019), miR-197 (p = 0.009) and miR-223 (p = 0.014) were demonstrated during prasugrel-therapy vs. aspirin. Circulating miR-197 was lower in those cardiovascular disease during therapy with aspirin (p = 0.039) or prasugrel (p = 0.0083). Conclusions: Prasugrel monotherapy in T2DM provided potent platelet inhibition and reduced levels of a number of platelet-associated miRNAs. miR-197 is a potential marker of cardiovascular disease in this population. Clinical outcome studies investigating prasugrel monotherapy are warranted in individuals with T2DM. Trial registration: EudraCT, 2009-011907-22. Registered 15 March 2010, https://www.clinicaltrialsregister.eu/ctr-search/trial/2009-011907-22/GB

    Describing whisker morphology of the Carnivora

    Get PDF
    One of the largest ecological transitions in carnivoran evolution was the shift from terrestrial to aquatic lifestyles, which has driven morphological diversity in skulls and other skeletal structures. In this paper, we investigate the association between those lifestyles and whisker morphology. However, comparing whisker morphology over a range of species is challenging since the number of whiskers and their positions on the mystacial pads vary between species. Also, each whisker will be at a different stage of growth and may have incurred damage due to wear and tear. Identifying a way to easily capture whisker morphology in a small number of whisker samples would be beneficial. Here, we describe individual and species variation in whisker morphology from two-dimensional scans in red fox, European otter and grey seal. A comparison of long, caudal whiskers shows inter-species differences most clearly. We go on to describe global whisker shape in 24 species of carnivorans, using linear approximations of curvature and taper, as well as traditional morphometric methods. We also qualitatively examine surface texture, or the presence of scales, using scanning electron micrographs. We show that gross whisker shape is highly conserved, with whisker curvature and taper obeying simple linear relationships with length. However, measures of whisker base radius, length, and maybe even curvature, can vary between species and substrate preferences. Specifically, the aquatic species in our sample have thicker, shorter whiskers that are smoother, with less scales present than those of terrestrial species. We suggest that these thicker whiskers may be stiffer and able to maintain their shape and position during underwater sensing, but being stiffer may also increase wear
    corecore